纯电动汽车动力电池管理系统(BMS)控制原理

蓄电池是一种将所获得的电能以化学能的形式储存并可以将化学能转变为电能的装置,可以重复充电和放电。动力电池是为电动汽车动力系统提供能量的蓄电池,其作用是储存和释放电能。动力电池系统由电池箱外壳、电池包、电池管理系统(Battery Management System,BMS)、辅助元器件四部分组成。本文介绍BMS的组成及控制原理。

纯电动汽车动力电池管理系统(BMS)控制原理

动力电池系统

1—外壳  2—辅助元器件  3—BMS  4—模组

1、电池管理系统

(1)电池管理系统组成

电池管理系统包括硬件和软件,硬件由主控盒、从控盒、高压监测盒、电压采集线、电流传感器、温度传感器、电池内部CAN总线等组成,如图1所示。软件由监测电压、监测电流、监测温度、监测绝缘电阻、荷电状态(State of Charge,SOC)估算等程序组成。

纯电动汽车动力电池管理系统(BMS)控制原理

图1  电池管理系统框图

(2)主控盒作用

如图2所示,主控盒作用主要有:①接收从控盒发来的实时模块电压和模组温度,并计算最大值和最小值;②接收高压监测盒发来的总电压和总电流;③通过新能源控制器局域网(CAN)与整车控制单元(VCU)、充电机等通信,通过快充CAN与直流充电桩、数据采集终端通信;④控制充放电电流(执行部件是车载充电机、直流快充桩和电机控制器);⑤控制动力电池加热。

纯电动汽车动力电池管理系统(BMS)控制原理

图2  主控盒作用

(3)从控盒作用

从控盒亦称作电池信息采集盒,如图3所示,从控盒作用主要有:①实时监控每个模块电压;②实时监测每个模组的温度;③监测SOC值;④将以上监测到的数据传送给主控盒。

纯电动汽车动力电池管理系统(BMS)控制原理

图3  从控盒作用

主控盒大多安装在电池箱内,也有的安装在电池箱外。安装在电池箱内的,采取1主N从,称作分布式;主从合一称作集中式,如图4所示,集中式如线束破损则容易产生安全隐患,进而使BMS短路甚至烧毁。

纯电动汽车动力电池管理系统(BMS)控制原理

图4  集中式BMS

(4)高压监测盒作用

如图5所示,高压监测盒作用主要有:①监测动力电池总电压,包括主继电器的内外四个监测点(主正继电器内、主正继电器外、主负继电器内、主负继电器外);②监测充放电电流;③监测高压系统绝缘性;④监测高压连接情况;⑤将以上监测到的数据传送给主控盒。

纯电动汽车动力电池管理系统(BMS)控制原理

图5  高压监测盒作用

2、BMS功能

BMS是保护和管理电池的核心部件,相当于人的大脑,不仅要保证电池安全可靠的使用,而且要充分发挥电池的能力和延长使用寿命。

(1)控制预充继电器、主正继电器

通过继电器触点闭合与断开,完成动力电池的预充、充电、上电、下电等程序。

(2)数据采集

高压监测盒采集动力电池总电压、动力电池总电流;②从控盒采集每个单体(模块)电压、每个模组的温度。

(3)状态分析

电池剩余电量(SOC)评估,让驾驶人了解续驶里程,方法有电荷计量法、断路电压法、卡尔曼滤波法、人工神经网络法、模糊逻辑法;②电池健康度(SOH)评估,评估电池健康(老化)程度、温度对电流影响,供评估SOC参考。

(4)热管理

①在低温情况下对电池包加热;②电池自身有内阻,电流流动产生热量,热量累积温度升高,超出正常温度后会影响电性能和寿命,BMS监测各模组温度,通过冷却液循环或通风散热

(5)安全保护

过电流保护,电流超过安全范围,采取安全保护;②过充电保护,充电电压高于上限时,BMS断开充电回路;③过放电保护,放电电压低于下限时,BMS断开放电回路;④过温保护,温度高于或低于正常范围时,禁止充、放电;⑤绝缘监测,BMS实时监测高压正、高压负与车身搭铁的绝缘电阻,如低于安全范围,则断开高压电并发出警告。

3、充电方式

(1)快充电

BMS通过快充CAN连接直流快充桩、数据采集终端、诊断接口。插上快充枪后,BMS将充电需求传送至直流快充桩,由直流快充桩调节充电电流,快充电过程需要30~45min(常温25℃,SOC由20%→80%)。

(2)慢充电

BMS通过新能源CAN连接VCU、驱动电机控制器、车载充电机、DC/DC控制器、加热器(PTC)控制器、电动压缩机控制器、诊断接口。早期有些车型的BMS通过慢充总线连接车载充电机、数据采集终端。插上慢充枪后,VCU唤醒BMS,将其由睡眠状态转为工作状态,VCU接通电池箱内的主负继电器,BMS先接通预充继电器,再接通主正继电器而断开预充继电器。BMS根据动力电池总电压、模块电压、模组温度,由充电机调节充电电流,慢充电过程需要8~10h(常温25℃,SOC由0%→100%)。

4、充电前加热

从控盒测量每个模块实时温度,反馈给主控盒,如低于设定值,主控盒指令加热继电器闭合,高压电流通过熔断器和加热膜。

(1)慢充加热回路

慢充加热回路如图6所示:交流充电桩→车载充电机→高压+→加热继电器触点→熔断器→加热膜→高压-→车载充电机→交流充电桩。

纯电动汽车动力电池管理系统(BMS)控制原理

图6  慢充加热回路

(2)快充加热回路

快充加热回路如图7所示:直流充电桩→高压+→加热继电器触点→熔断器→加热膜→高压-→直流充电桩。

纯电动汽车动力电池管理系统(BMS)控制原理

图7  快充加热回路

5、预充电

慢充预充电回路如图8所示:交流充电桩→车载充电机→高压+→预充继电器触点→预充电阻→电池组→维修开关(内有熔断器)→电池组→电流传感器→主负继电器触点→高压-→车载充电机→交流充电桩。

快充预充电则是由直流充电桩提供电源。

纯电动汽车动力电池管理系统(BMS)控制原理

图8  慢充预充电回路

6、充电

(1)慢充回路

慢充回路如图9所示:交流充电桩→车载充电机→高压+→主正继电器触点→电池组→维修开关(内有熔断器)→电池组→电流传感器→主负继电器触点→高压-→车载充电机→交流充电桩。

纯电动汽车动力电池管理系统(BMS)控制原理

图9  慢充回路

(2)快充回路

快充回路如图10所示:直流充电桩→高压+→主正继电器触点→电池组→维修开关(内有熔断器)→电池组→电流传感器→主负继电器触点→高压-→直流充电桩。

纯电动汽车动力电池管理系统(BMS)控制原理

图10  快充回路

7、上电

(1)预上电回路

打开点火开关,VCU收到15号信号唤醒BMS;BMS自检、初始化,将结果上报VCU;VCU发出电流给主负继电器,主负继电器触点闭合。因电机控制器、电动压缩机控制器内有电容器,BMS首先对电容预放电,然后闭合预充继电器。

预上电回路如图11所示:动力电池+→预充电阻→预充继电器触点→高压+→负载→高压-→主负继电器触点→电流传感器→动力电池-。

纯电动汽车动力电池管理系统(BMS)控制原理

图11  预上电回路

(2)上电回路

电容电压等于动力电池电压时,BMS闭合主正继电器,断开预充继电器。

上电回路如图12所示:动力电池+→主正继电器触点→高压+→负载→高压-→主负继电器触点→电流传感器→动力电池。

纯电动汽车动力电池管理系统(BMS)控制原理

图12  上电回路

8、绝缘监测

绝缘监测回路如图13所示:①电池正监测回路,动力电池+→绝缘监测电阻R1→主正绝缘监测继电器S1→搭铁;②电池负监测回路,动力电池-→绝缘监测电阻R2→主负绝缘监测继电器S2→搭铁。

BMS分别指令S1、S2 闭合,分别测得电压U1、U2,以及高压总电压U总,将这三者代入公式计算,计算出高压+与搭铁的绝缘电阻、高压-与搭铁的绝缘电阻,然后判断绝缘性能是否正常。

纯电动汽车动力电池管理系统(BMS)控制原理

图13  绝缘监测回路

R1、R2—绝缘监测电阻   U1、U2—监测电压

R—电压传感器   U总—高压总电压

重要说明 以上图文摘自机械工业出版社《纯电动汽车结构与原理(彩色图解)》,本站所发布的一切资料仅限用于学习和研究目的,请在下载后的24个小时之内从您的电脑中彻底删除,不得用于商业或者非法用途,否则一切后果请用户自行承担。
个人中心
购物车
优惠劵
今日签到
搜索